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I. INTRODUCTION

This paper presents an advanced power management system (PMS) designed for low-cost wireless devices, including sensor nodes, IoT devices, and medical implants. The system

incorporates a boost DC-DC converter integrated circuit with an off-chip inductor and a maximum power point tracking (MPPT) circuit optimized to extract power from

thermoelectric generators (TEGs) with an efficiency of about 93.2%. Additionally, an active diode is used to reduce reverse current and achieve energy conversion efficiency of up to

80.4%. The PMS is implemented using a 0.18 µm CMOS process aimed at reducing power loss and boosting the overall efficiency of energy harvesting systems for low-power

applications.

II. DESCRIPTION

Conclusion
In this work, we propose a boost converter for the TEG source. The self-startup works at 150mV. MPPT and an active diode is used. The active diode circuit is specifically designed to

prevent the flow of reverse current and reduce power loss, leading to improved efficiency in the converter. The ZCS sometimes has early and late switching, which can cause a high

voltage drop and negative inductor current. Active diode is better than zero current sensing in terms of reducing negative inductor current.
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Fig. 1. Block diagram of the conventional CMOS ring oscillator

Fig. 3. (a) Block diagram of the proposed system architecture (b) simulated startup, (c) simulated MPPT operations.

Fig. 1 shows the conventional CMOS ring oscillator. The

conventional CMOS ring oscillator generates a signal with a

high-frequency range. Creating a low-frequency signal in the

range of hundreds of Hz with a conventional CMOS ring

oscillator requires adding more inverters, which in turn raises

the circuit's static power dissipation [1]. Thus, the delay time

𝝉 can be calculated as [2]

Fig. 4. (a) Die photograph of fabricated IC, (b) measurement setup, and (c) measured efficiencies of the converter.
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Fig. 2. Block diagram of the dual-stage boost converter

with bulky transformer for startup.
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Fig. 2 shows the dual-stage boost converter. The system

consists of a dual-stage boosting technique, MPPT, pulse

width modulation (PWM), and zero current switching (ZCS).

This design does not require any external battery, which

simplifies the system. However, to achieve startup from low

voltage, the system relies on a bulky transformer, which may

increase the overall size and the cost of the overall system.

Also, the transformer can introduce electrical losses and

reduce the power conversion efficiency of the system [3].

Fig. 3(a) shows the proposed system architecture. It mainly

consists of a thyristor-based self-startup circuit, MPPT

controller, voltage detector, and active diode. In this system,

the self-start boost converter architecture is energy-efficient

and operates even at a minimum voltage of 150 mV. In order

to maximize its power efficiency, this converter uses an

external inductor, an active diode to ensure unidirectional

current flow while preventing leakage, and an MPPT system

using the fractional open circuit voltage (FOCV) approach.

Fig. 3(b) shows the waveform of the thyristor-based self-

startup. When the VDD voltage reaches 800 mV, the startup

operation is turned off, and the normal operation is started.

The MPPT enables optimal power extraction from the source,

and an active diode is used to prevent the reverse current flow,

as shown in Fig. 3(c).

Fig. 4(a) shows the microphotograph of the fabricated proposed boost converter with a 180-nm CMOS process, and it is mounted on the test board using the chip-on-board technique.

Fig. 4(b) shows the measurement setup. Fig. 4(c) shows the tracking efficiency ηMPPT = (PIN/PMax) as a function of PIN. The results show that ηMPPT > 93% is achieved in the PIN range

from 1 mW to 4 mW, with the peak ηMPPT of 93.2% and the conversion efficiency ηCONV = (POUT/PIN) as a function of PIN. The peak ηCONV = 80.4% is achieved for PIN = 1.12 mW.
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